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In-Context Learning
Motivation Example

Answer in One Word.
"You have a right to perform your prescribed duties, but you are not entitled to the fruits of 
your actions." : Bhagavad Gita
"Love is patient, love is kind. It does not envy, it does not boast, it is not proud." : Corinthians
"The root of suffering is attachment." : Samyutta Nikaya
"And your Lord never forgets." : ?

Qur'an

"Love is patient, love is kind. It does not envy, it does not boast, it is not proud." : Christianity
"The root of suffering is attachment." : Buddhism
"And your Lord never forgets." : Islam
"You have a right to perform your prescribed duties, but you are not entitled to the fruits of
your actions." : ?

Hinduism

"You have a right to perform your prescribed duties, but you are not entitled to the fruits of
your actions." : Detachment
"And your Lord never forgets." : Omniscient
"Love is patient, love is kind. It does not envy, it does not boast, it is not proud." : Benevolent
"The root of suffering is attachment." : ?

Clinging
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The Pre-ICL Paradigm
Placeholder

BERT BERT
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Masked Sentence A Masked Sentence B

Pre-training Fine-Tuning

NSP Mask LM Mask LM

Unlabeled Sentence A and B Pair 

SQuAD

Question Answer Pair

NERMNLI

Figure 1: Overall pre-training and fine-tuning procedures for BERT. Apart from output layers, the same architec-
tures are used in both pre-training and fine-tuning. The same pre-trained model parameters are used to initialize
models for different down-stream tasks. During fine-tuning, all parameters are fine-tuned. [CLS] is a special
symbol added in front of every input example, and [SEP] is a special separator token (e.g. separating ques-
tions/answers).

ing and auto-encoder objectives have been used
for pre-training such models (Howard and Ruder,
2018; Radford et al., 2018; Dai and Le, 2015).

2.3 Transfer Learning from Supervised Data

There has also been work showing effective trans-
fer from supervised tasks with large datasets, such
as natural language inference (Conneau et al.,
2017) and machine translation (McCann et al.,
2017). Computer vision research has also demon-
strated the importance of transfer learning from
large pre-trained models, where an effective recipe
is to fine-tune models pre-trained with Ima-
geNet (Deng et al., 2009; Yosinski et al., 2014).

3 BERT

We introduce BERT and its detailed implementa-
tion in this section. There are two steps in our
framework: pre-training and fine-tuning. Dur-
ing pre-training, the model is trained on unlabeled
data over different pre-training tasks. For fine-
tuning, the BERT model is first initialized with
the pre-trained parameters, and all of the param-
eters are fine-tuned using labeled data from the
downstream tasks. Each downstream task has sep-
arate fine-tuned models, even though they are ini-
tialized with the same pre-trained parameters. The
question-answering example in Figure 1 will serve
as a running example for this section.

A distinctive feature of BERT is its unified ar-
chitecture across different tasks. There is mini-

mal difference between the pre-trained architec-
ture and the final downstream architecture.

Model Architecture BERT’s model architec-
ture is a multi-layer bidirectional Transformer en-
coder based on the original implementation de-
scribed in Vaswani et al. (2017) and released in
the tensor2tensor library.1 Because the use
of Transformers has become common and our im-
plementation is almost identical to the original,
we will omit an exhaustive background descrip-
tion of the model architecture and refer readers to
Vaswani et al. (2017) as well as excellent guides
such as “The Annotated Transformer.”2

In this work, we denote the number of layers
(i.e., Transformer blocks) as L, the hidden size as
H , and the number of self-attention heads as A.3

We primarily report results on two model sizes:
BERTBASE (L=12, H=768, A=12, Total Param-
eters=110M) and BERTLARGE (L=24, H=1024,
A=16, Total Parameters=340M).

BERTBASE was chosen to have the same model
size as OpenAI GPT for comparison purposes.
Critically, however, the BERT Transformer uses
bidirectional self-attention, while the GPT Trans-
former uses constrained self-attention where every
token can only attend to context to its left.4

1https://github.com/tensorflow/tensor2tensor
2http://nlp.seas.harvard.edu/2018/04/03/attention.html
3In all cases we set the feed-forward/filter size to be 4H ,

i.e., 3072 for the H = 768 and 4096 for the H = 1024.
4We note that in the literature the bidirectional Trans-

Figure: Pre-training and Supervised Fine-Tuning

1

1Devlin, J., et al. (2019). BERT: Pre-training of deep bidirectional transformers for language understanding.
Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human
Language Technologies, Volume 1 (Long and Short Papers), 4171–4186.
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In-Context Learning
Placeholder

1 Introduction

Recent years have featured a trend towards pre-trained language representations in NLP systems, applied in increasingly
flexible and task-agnostic ways for downstream transfer. First, single-layer representations were learned using word
vectors [MCCD13, PSM14] and fed to task-specific architectures, then RNNs with multiple layers of representations
and contextual state were used to form stronger representations [DL15, MBXS17, PNZtY18] (though still applied to
task-specific architectures), and more recently pre-trained recurrent or transformer language models [VSP+17] have
been directly fine-tuned, entirely removing the need for task-specific architectures [RNSS18, DCLT18, HR18].

This last paradigm has led to substantial progress on many challenging NLP tasks such as reading comprehension,
question answering, textual entailment, and many others, and has continued to advance based on new architectures
and algorithms [RSR+19, LOG+19, YDY+19, LCG+19]. However, a major limitation to this approach is that while
the architecture is task-agnostic, there is still a need for task-specific datasets and task-specific fine-tuning: to achieve
strong performance on a desired task typically requires fine-tuning on a dataset of thousands to hundreds of thousands
of examples specific to that task. Removing this limitation would be desirable, for several reasons.

First, from a practical perspective, the need for a large dataset of labeled examples for every new task limits the
applicability of language models. There exists a very wide range of possible useful language tasks, encompassing
anything from correcting grammar, to generating examples of an abstract concept, to critiquing a short story. For many
of these tasks it is difficult to collect a large supervised training dataset, especially when the process must be repeated
for every new task.

Second, the potential to exploit spurious correlations in training data fundamentally grows with the expressiveness
of the model and the narrowness of the training distribution. This can create problems for the pre-training plus
fine-tuning paradigm, where models are designed to be large to absorb information during pre-training, but are then
fine-tuned on very narrow task distributions. For instance [HLW+20] observe that larger models do not necessarily
generalize better out-of-distribution. There is evidence that suggests that the generalization achieved under this paradigm
can be poor because the model is overly specific to the training distribution and does not generalize well outside it
[YdC+19, MPL19]. Thus, the performance of fine-tuned models on specific benchmarks, even when it is nominally at
human-level, may exaggerate actual performance on the underlying task [GSL+18, NK19].

Third, humans do not require large supervised datasets to learn most language tasks – a brief directive in natural
language (e.g. “please tell me if this sentence describes something happy or something sad”) or at most a tiny number
of demonstrations (e.g. “here are two examples of people acting brave; please give a third example of bravery”) is often

Figure 1.1: Language model meta-learning. During unsupervised pre-training, a language model develops a broad
set of skills and pattern recognition abilities. It then uses these abilities at inference time to rapidly adapt to or recognize
the desired task. We use the term “in-context learning” to describe the inner loop of this process, which occurs within
the forward-pass upon each sequence. The sequences in this diagram are not intended to be representative of the data a
model would see during pre-training, but are intended to show that there are sometimes repeated sub-tasks embedded
within a single sequence.

3

Figure: Language Model Meta Learning

2
2Brown, T., et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems,

33, 1877–1901.
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In-Context Learning: Scaling Effects
Placeholder

Figure 1.2: Larger models make increasingly efficient use of in-context information. We show in-context learning
performance on a simple task requiring the model to remove random symbols from a word, both with and without a
natural language task description (see Sec. 3.9.2). The steeper “in-context learning curves” for large models demonstrate
improved ability to learn a task from contextual information. We see qualitatively similar behavior across a wide range
of tasks.

sufficient to enable a human to perform a new task to at least a reasonable degree of competence. Aside from pointing
to a conceptual limitation in our current NLP techniques, this adaptability has practical advantages – it allows humans
to seamlessly mix together or switch between many tasks and skills, for example performing addition during a lengthy
dialogue. To be broadly useful, we would someday like our NLP systems to have this same fluidity and generality.

One potential route towards addressing these issues is meta-learning1 – which in the context of language models means
the model develops a broad set of skills and pattern recognition abilities at training time, and then uses those abilities
at inference time to rapidly adapt to or recognize the desired task (illustrated in Figure 1.1). Recent work [RWC+19]
attempts to do this via what we call “in-context learning”, using the text input of a pretrained language model as a form
of task specification: the model is conditioned on a natural language instruction and/or a few demonstrations of the task
and is then expected to complete further instances of the task simply by predicting what comes next.

While it has shown some initial promise, this approach still achieves results far inferior to fine-tuning – for example
[RWC+19] achieves only 4% on Natural Questions, and even its 55 F1 CoQa result is now more than 35 points behind
the state of the art. Meta-learning clearly requires substantial improvement in order to be viable as a practical method of
solving language tasks.

Another recent trend in language modeling may offer a way forward. In recent years the capacity of transformer
language models has increased substantially, from 100 million parameters [RNSS18], to 300 million parameters
[DCLT18], to 1.5 billion parameters [RWC+19], to 8 billion parameters [SPP+19], 11 billion parameters [RSR+19],
and finally 17 billion parameters [Tur20]. Each increase has brought improvements in text synthesis and/or downstream
NLP tasks, and there is evidence suggesting that log loss, which correlates well with many downstream tasks, follows a
smooth trend of improvement with scale [KMH+20]. Since in-context learning involves absorbing many skills and
tasks within the parameters of the model, it is plausible that in-context learning abilities might show similarly strong
gains with scale.

1In the context of language models this has sometimes been called “zero-shot transfer”, but this term is potentially ambiguous:
the method is “zero-shot” in the sense that no gradient updates are performed, but it often involves providing inference-time
demonstrations to the model, so is not truly learning from zero examples. To avoid this confusion, we use the term “meta-learning”
to capture the inner-loop / outer-loop structure of the general method, and the term “in context-learning” to refer to the inner
loop of meta-learning. We further specialize the description to “zero-shot”, “one-shot”, or “few-shot” depending on how many
demonstrations are provided at inference time. These terms are intended to remain agnostic on the question of whether the model
learns new tasks from scratch at inference time or simply recognizes patterns seen during training – this is an important issue which
we discuss later in the paper, but “meta-learning” is intended to encompass both possibilities, and simply describes the inner-outer
loop structure.

4

Figure:Word Scrambling and Manipulation TasksFigure 3.10: Results on all 10 arithmetic tasks in the few-shot settings for models of different sizes. There is a
significant jump from the second largest model (GPT-3 13B) to the largest model (GPT-3 175), with the latter being
able to reliably accurate 2 digit arithmetic, usually accurate 3 digit arithmetic, and correct answers a significant fraction
of the time on 4-5 digit arithmetic, 2 digit multiplication, and compound operations. Results for one-shot and zero-shot
are shown in the appendix.

• 3 digit subtraction (3D-) – Same as 2 digit subtraction, except numbers are uniformly sampled from [0, 1000).

• 4 digit addition (4D+) – Same as 3 digit addition, except uniformly sampled from [0, 10000).

• 4 digit subtraction (4D-) – Same as 3 digit subtraction, except uniformly sampled from [0, 10000).

• 5 digit addition (5D+) – Same as 3 digit addition, except uniformly sampled from [0, 100000).

• 5 digit subtraction (5D-) – Same as 3 digit subtraction, except uniformly sampled from [0, 100000).

• 2 digit multiplication (2Dx) – The model is asked to multiply two integers sampled uniformly from [0, 100),
e.g. “Q: What is 24 times 42? A: 1008”.

• One-digit composite (1DC) – The model is asked to perform a composite operation on three 1 digit numbers,
with parentheses around the last two. For example, “Q: What is 6+(4*8)? A: 38”. The three 1 digit numbers
are selected uniformly on [0, 10) and the operations are selected uniformly from {+,-,*}.

In all 10 tasks the model must generate the correct answer exactly. For each task we generate a dataset of 2,000 random
instances of the task and evaluate all models on those instances.

First we evaluate GPT-3 in the few-shot setting, for which results are shown in Figure 3.10. On addition and subtraction,
GPT-3 displays strong proficiency when the number of digits is small, achieving 100% accuracy on 2 digit addition,
98.9% at 2 digit subtraction, 80.2% at 3 digit addition, and 94.2% at 3-digit subtraction. Performance decreases as the
number of digits increases, but GPT-3 still achieves 25-26% accuracy on four digit operations and 9-10% accuracy on
five digit operations, suggesting at least some capacity to generalize to larger numbers of digits. GPT-3 also achieves
29.2% accuracy at 2 digit multiplication, an especially computationally intensive operation. Finally, GPT-3 achieves
21.3% accuracy at single digit combined operations (for example, 9*(7+5)), suggesting that it has some robustness
beyond just single operations.

As Figure 3.10 makes clear, small models do poorly on all of these tasks – even the 13 billion parameter model (the
second largest after the 175 billion full GPT-3) can solve 2 digit addition and subtraction only half the time, and all
other operations less than 10% of the time.

One-shot and zero-shot performance are somewhat degraded relative to few-shot performance, suggesting that adaptation
to the task (or at the very least recognition of the task) is important to performing these computations correctly.
Nevertheless, one-shot performance is still quite strong, and even zero-shot performance of the full GPT-3 significantly

22

Figure: Arithmetic Tasks

3
3Brown, T., et al. (2020). Language models are few-shot learners. Advances in Neural Information Processing Systems,

33, 1877–1901.
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Meta-ICL
Placeholder

Meta-training Inference

Task C meta-training tasks An unseen target task

Data given Training examples Ti = {(xi
j , y

i
j)}Ni

j=1, ∀i ∈ [1, C] (Ni � k)
Training examples (x1, y1), · · · , (xk, yk),
Test input x

Objective

For each iteration,

argmaxc∈CP (c|x1, y1, · · · , xk, yk, x)
1. Sample task i ∈ [1, C]
2. Sample k + 1 examples from Ti: (x1, y1), · · · , (xk+1, yk+1)
3. Maximize P (yk+1|x1, y1, · · · , xk, yk, xk+1)

Table 1: Overview of MetaICL (Section 3). MetaICL uses the same in-context learning setup at both meta-training
and inference. At meta-training time, k + 1 examples for a task is sampled, where the last example acts as the test
example and the rest k examples act as the training examples. Inference is the same as typical in-context learning
where k labeled examples are used to make a prediction for a test input.

3.1 Meta-training

The model is meta-trained on a collection of tasks
which we call meta-training tasks. For every itera-
tion, one meta-training task is sampled, and k + 1
training examples (x1, y1), · · · , (xk+1, yk+1) are
sampled from the training examples of the cho-
sen task. We then supervise the model by feed-
ing the concatenation of x1, y1, · · · , xk, yk, xk+1

to the model as an input and train the model to gen-
erate yk+1 using a negative log likelihood objec-
tive. This simulates in-context learning at inference
where the first k examples serve as training exam-
ples and the last (k + 1)-th example is regarded as
the test example.

3.2 Inference

For a new target task, the model is given k train-
ing examples (x1, y1), · · · , (xk, yk) as well as a
test input x. It is also given a set of candidates
C which is either a set of labels (in classification)
or answer options (in question answering). As in
meta-training, the model takes a concatenation of
x1, y1, · · · , xk, yk, x as the input, and compute the
conditional probability of each label ci ∈ C. The
label with the maximum conditional probability is
returned as a prediction.

3.3 Channel MetaICL

We introduce a noisy channel variant of MetaICL
called Channel MetaICL, following Min et al.
(2022). In the noisy channel model, P (y|x) is
reparameterized to P (x|y)P (y)

P (x) ∝ P (x|y)P (y). We
follow Min et al. (2022) in using P (y) = 1

|C| and
modeling P (x|y) which allows us to use the chan-
nel approach by simply flipping xi and yi. Specif-
ically, at meta-training time, the model is given
a concatenation of y1, x1, · · · , yk, xk, yk+1 and is

Meta-train Target

Setting # tasks # examples Setting # tasks

HR 61 819,200 LR 26

Classification 43 384,022 Classification 20Non-Classification 37 368,768

QA 37 486,143 QA 22Non-QA 33 521,342

Non-NLI 55 463,579 NLI 8

Non-Paraphrase 59 496,106 Paraphrase 4

Table 2: Statistics of seven different settings. Each row
indicates meta-training/target tasks for each setting. ‘#
tasks’ in meta-training is equivalent to C in Table 1.
For all settings, there is no overlap in tasks between
meta-training and target. ‘HR’ and ‘LR’ indicate high
resource and low resource, respectively. Datasets and
the task ontology are taken from CROSSFIT (Ye et al.,
2021) and UNIFIEDQA (Khashabi et al., 2020). Full
datasets for each split are provided in Appendix A.

trained to generate xk+1. At inference, the model
computes argmaxc∈CP (x|y1, x1, · · · , yk, xk, c).

4 Experimental Setup

4.1 Datasets

We use a large collection of tasks taken
from CROSSFIT (Ye et al., 2021) and UNI-
FIEDQA (Khashabi et al., 2020). We have 142
unique tasks in total, covering a variety of prob-
lems including text classification, question answer-
ing (QA), natural language inference (NLI) and
paraphrase detection. All tasks are in English.

We experiment with seven distinct settings as
shown in Table 2, where there is no overlap be-
tween the meta-training and target tasks. The num-
ber of unique target tasks in total is 52, which is sig-
nificantly larger than other relevant work (Khashabi
et al., 2020; Zhong et al., 2021; Mishra et al., 2022;

2793

Figure:Meta-ICL Task
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Table 1: Overview of MetaICL (Section 3). MetaICL uses the same in-context learning setup at both meta-training
and inference. At meta-training time, k + 1 examples for a task is sampled, where the last example acts as the test
example and the rest k examples act as the training examples. Inference is the same as typical in-context learning
where k labeled examples are used to make a prediction for a test input.

3.1 Meta-training

The model is meta-trained on a collection of tasks
which we call meta-training tasks. For every itera-
tion, one meta-training task is sampled, and k + 1
training examples (x1, y1), · · · , (xk+1, yk+1) are
sampled from the training examples of the cho-
sen task. We then supervise the model by feed-
ing the concatenation of x1, y1, · · · , xk, yk, xk+1

to the model as an input and train the model to gen-
erate yk+1 using a negative log likelihood objec-
tive. This simulates in-context learning at inference
where the first k examples serve as training exam-
ples and the last (k + 1)-th example is regarded as
the test example.

3.2 Inference

For a new target task, the model is given k train-
ing examples (x1, y1), · · · , (xk, yk) as well as a
test input x. It is also given a set of candidates
C which is either a set of labels (in classification)
or answer options (in question answering). As in
meta-training, the model takes a concatenation of
x1, y1, · · · , xk, yk, x as the input, and compute the
conditional probability of each label ci ∈ C. The
label with the maximum conditional probability is
returned as a prediction.

3.3 Channel MetaICL

We introduce a noisy channel variant of MetaICL
called Channel MetaICL, following Min et al.
(2022). In the noisy channel model, P (y|x) is
reparameterized to P (x|y)P (y)

P (x) ∝ P (x|y)P (y). We
follow Min et al. (2022) in using P (y) = 1

|C| and
modeling P (x|y) which allows us to use the chan-
nel approach by simply flipping xi and yi. Specif-
ically, at meta-training time, the model is given
a concatenation of y1, x1, · · · , yk, xk, yk+1 and is

Meta-train Target

Setting # tasks # examples Setting # tasks

HR 61 819,200 LR 26

Classification 43 384,022 Classification 20Non-Classification 37 368,768

QA 37 486,143 QA 22Non-QA 33 521,342

Non-NLI 55 463,579 NLI 8

Non-Paraphrase 59 496,106 Paraphrase 4

Table 2: Statistics of seven different settings. Each row
indicates meta-training/target tasks for each setting. ‘#
tasks’ in meta-training is equivalent to C in Table 1.
For all settings, there is no overlap in tasks between
meta-training and target. ‘HR’ and ‘LR’ indicate high
resource and low resource, respectively. Datasets and
the task ontology are taken from CROSSFIT (Ye et al.,
2021) and UNIFIEDQA (Khashabi et al., 2020). Full
datasets for each split are provided in Appendix A.
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computes argmaxc∈CP (x|y1, x1, · · · , yk, xk, c).

4 Experimental Setup

4.1 Datasets

We use a large collection of tasks taken
from CROSSFIT (Ye et al., 2021) and UNI-
FIEDQA (Khashabi et al., 2020). We have 142
unique tasks in total, covering a variety of prob-
lems including text classification, question answer-
ing (QA), natural language inference (NLI) and
paraphrase detection. All tasks are in English.

We experiment with seven distinct settings as
shown in Table 2, where there is no overlap be-
tween the meta-training and target tasks. The num-
ber of unique target tasks in total is 52, which is sig-
nificantly larger than other relevant work (Khashabi
et al., 2020; Zhong et al., 2021; Mishra et al., 2022;
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ICL as Meta Optimizer
Placeholder

• Algorithmic Equivalence: Transformers can simulate linear learners (GD, ridge, least-squares), transitioning to
Bayesian estimators with depth/width. 5

• Implicit Finetuning: Transformer attention is dual to gradient descent. 6

⇒ ICL≈ internal meta-gradient updates.

• Function Class Generalization: Transformers trained from scratch can in-context learn full function classes
(linear, sparse linear, 2-layer MLPs, decision trees), even under distribution shift. 7

5Akyürek, Ege, et al. ”What Learning Algorithm Is In-Context Learning? Investigations with Linear Models.” The
Eleventh International Conference on Learning Representations, 2023.

6Dai, Damai, et al. “Why Can GPT Learn In-Context? Language Models Implicitly Perform Gradient Descent as
Meta-Optimizers.” Findings of the Association for Computational Linguistics: ACL 2023, 2023.

7Garg, Shivam, et al. “What Can Transformers Learn In-Context? A Case Study of Simple Function Classes.” Advances
in Neural Information Processing Systems 35 (NeurIPS 2022).

9 / 22



ICL as Meta Optimizer
Placeholder

• Algorithmic Equivalence: Transformers can simulate linear learners (GD, ridge, least-squares), transitioning to
Bayesian estimators with depth/width. 5

• Implicit Finetuning: Transformer attention is dual to gradient descent. 6

⇒ ICL≈ internal meta-gradient updates.

• Function Class Generalization: Transformers trained from scratch can in-context learn full function classes
(linear, sparse linear, 2-layer MLPs, decision trees), even under distribution shift. 7

5Akyürek, Ege, et al. ”What Learning Algorithm Is In-Context Learning? Investigations with Linear Models.” The
Eleventh International Conference on Learning Representations, 2023.

6Dai, Damai, et al. “Why Can GPT Learn In-Context? Language Models Implicitly Perform Gradient Descent as
Meta-Optimizers.” Findings of the Association for Computational Linguistics: ACL 2023, 2023.

7Garg, Shivam, et al. “What Can Transformers Learn In-Context? A Case Study of Simple Function Classes.” Advances
in Neural Information Processing Systems 35 (NeurIPS 2022).

9 / 22



ICL as Meta Optimizer
Placeholder

• Algorithmic Equivalence: Transformers can simulate linear learners (GD, ridge, least-squares), transitioning to
Bayesian estimators with depth/width. 5

• Implicit Finetuning: Transformer attention is dual to gradient descent. 6

⇒ ICL≈ internal meta-gradient updates.

• Function Class Generalization: Transformers trained from scratch can in-context learn full function classes
(linear, sparse linear, 2-layer MLPs, decision trees), even under distribution shift. 7

5Akyürek, Ege, et al. ”What Learning Algorithm Is In-Context Learning? Investigations with Linear Models.” The
Eleventh International Conference on Learning Representations, 2023.

6Dai, Damai, et al. “Why Can GPT Learn In-Context? Language Models Implicitly Perform Gradient Descent as
Meta-Optimizers.” Findings of the Association for Computational Linguistics: ACL 2023, 2023.

7Garg, Shivam, et al. “What Can Transformers Learn In-Context? A Case Study of Simple Function Classes.” Advances
in Neural Information Processing Systems 35 (NeurIPS 2022).

9 / 22



ICL as Meta Optimizer
Placeholder

• Algorithmic Equivalence: Transformers can simulate linear learners (GD, ridge, least-squares), transitioning to
Bayesian estimators with depth/width. 5

• Implicit Finetuning: Transformer attention is dual to gradient descent. 6

⇒ ICL≈ internal meta-gradient updates.

• Function Class Generalization: Transformers trained from scratch can in-context learn full function classes
(linear, sparse linear, 2-layer MLPs, decision trees), even under distribution shift. 7

5Akyürek, Ege, et al. ”What Learning Algorithm Is In-Context Learning? Investigations with Linear Models.” The
Eleventh International Conference on Learning Representations, 2023.

6Dai, Damai, et al. “Why Can GPT Learn In-Context? Language Models Implicitly Perform Gradient Descent as
Meta-Optimizers.” Findings of the Association for Computational Linguistics: ACL 2023, 2023.

7Garg, Shivam, et al. “What Can Transformers Learn In-Context? A Case Study of Simple Function Classes.” Advances
in Neural Information Processing Systems 35 (NeurIPS 2022).

9 / 22



ICL as Meta Optimizer
Placeholder

Figure: SGD-Transformer Equivalence

Meta-Learning View: ICL acts as
data-dependent meta-learning, distinct from
gradient-/metric-/amortized meta-learners.
⇒ Implicit algorithm is shaped by pretraining

distribution.

Published as a conference paper at ICLR 2025

Figure 1: In-context learning models can find the data-dependent optimal learning algorithm, in a
space which is more inclusive than typical meta-learners.

et al., 2024). Nevertheless, this setting is so simplified that it is far removed from real-world
scenarios, and no more complex settings currently offer such a transparent understanding. To achieve
a more generalizable understanding of ICL, researchers have approached the problem from various
perspectives, including theoretical results on expressiveness (Wang et al., 2024b; Bai et al., 2023),
learning dynamics and convergence (Tian et al., 2023; Li et al., 2023b; Huang et al., 2024; Zhang
et al., 2024; Sander et al., 2024), generalization error (Li et al., 2023a; 2024; Wies et al., 2023), and
observations of ICL model behaviors (Akyürek et al., 2023; Bhattamishra et al., 2024; Zhang et al.,
2023).

Although precisely understanding what and how do ICL models learn from pre-training is chal-
lenging and depends on various problem settings and data distributions, a basic consensus has been
reached. Specifically, it is understood that an ICL model learns a learning algorithm that maps
(x(1),y(1), · · · ,x(n),y(n)) to f through pre-training. The inference process is then interpreted as
first learning f from (x(1),y(1), · · · ,x(n),y(n)) and subsequently applying it to a new input x(n+1).
This consensus highlights the nature of ICL models as meta-learners (Kirsch et al., 2022; Dai et al.,
2023), which involves learning a learning algorithm to enable systems to quickly adapt to new
tasks—essentially, learning-to-learn (Schmidhuber, 1987; Thrun & Pratt, 1998). Given tasks for
meta-training (pre-training), the goal is to learn a learner function (i.e., a learning algorithm) that can
make inferences for a given input based on a provided set of labeled examples, enabling generalization
to meta-testing (unseen) tasks. While typical meta-learners have been extensively studied, none have
demonstrated the level of general intelligence achieved by LLMs, or ICL models. This naturally
raises the question: what distinguishes ICL models from typical meta-learners? While existing works
on understanding ICL focus on identifying the exact learning algorithms that ICL models learn,
we aim to address a different question: why are ICL models more prominent compared to typical
meta-learners?

The difference between ICL models and typical meta-learners lies in their hypothesis spaces. ICL is
seen as meta-learning with minimal inductive bias (Kirsch et al., 2022). In machine learning, less
inductive bias, often leads to better performance with sufficient data (LeCun et al., 2015). Human-
designed knowledge may not always be relevant, while data-driven knowledge, optimized through
training data, performs well when the hypothesis space is expressive and training is generalizable.
Meta-learners’ hypothesis spaces define the knowledge needed for a learning algorithm. They use
a function with two inputs: a support set with labeled examples and a query input, producing the
prediction. Typical meta-learners rely on strong prior knowledge to structure their algorithms. In
contrast, ICL models use a black-box model, like transformers (Vaswani, 2017), which enable
data-driven interactions among samples, can be stacked into deep architectures, and incorporate
necessary inductive biases. These properties enhance their generalizability. We study if the advantage
of data-driven approaches over human-designed knowledge contributes to the success of ICL models
(Figure 1). We believe that ICL models are prominent due to their ability to learn data-dependent
optimal learning algorithms. However, their optimality is data-dependent1, posing potential risks in
generalizability.

1The formal definitions of an optimal learning algorithm and a data-dependent optimal learning algorithm
are provided in Appendix B

2

Figure: ICL as a Meta-Optimizer

8 9

8von Oswald, Johannes, et al. “Transformers Learn In-Context by Gradient Descent.” Proceedings of the 40th
International Conference on Machine Learning, 2023.

9Wu, Shiguang, et al. “Why In-Context Learning Models are Good Few-Shot Learners?” International Conference on
Learning Representations, 2025.
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ICL as SGD?
Placeholder

• Lingfeng et al questioned the ICL ≈ SGD approach.

• They questioned both the Emergent equivalence
and the Constructive Equivalence

•

MΘ0
(σA ◦ xt)− MΘ0

(σB ◦ xt)︸ ︷︷ ︸
The order sensitivity of ICL

= MΘσA
(xt)− MΘσB

(xt)︸ ︷︷ ︸
The order sensitivity of algorithm A

• Across all metrics(Accuracy, Cosine similarity among
others), ICL and GD show inconsistent behavior.

Do pretrained Transformers Learn In-Context by Gradient Descent?

Gradient Descent (GD). Gradient Descent is an itera-
tive numerical optimization algorithm used to minimize a
given objective with respect to model parameters. Given a
model with initial parameters Θ0 and a differentiable loss
function J ∈ Y×Y → R, the algorithm updates the param-
eters toward the negative gradient ∇Θ0J . GD is a standard
optimizer used to train neural networks including LLMs.
Although there are variants, like SGD and Adam, that work
well in practice, we focus our study on vanilla GD, which
calculates the gradients and takes a step (learning rate η) of
fixed size. In the context of learning from a set of demon-
strations, pretrained models MΘ0

∼M are fine-tuned on a
particular task f using GD by updating model parameters.
Formally, parameter updates on the model MΘ0 are per-
formed for some epochs using the available demonstrations
Sf = {Sf

i = (xi, f(xi))}Ni=1 as follows:

Θ1 = Θ0 − η∇Θ

 1

N

∑
(xi,f(xi))

∈Sf

J (MΘ0(xi), f(xi))


(1)

After this process, the model is expected to perform this
task given a new test sample directly as input: MΘ1

(xt
i).

3. The limiting assumptions in the study of
ICL≈GD hypothesis

emergent

whole model 
updates

sub-model 
updates

not emergent

Ⓐ Ⓑ Ⓒ

Figure 1: C is discussed in
§3. A , B in §4, §5;

We highlight how recent
studies drift from these
conventional definitions
of ICL and GD (§2.2)
to support another form
of equivalence. Specif-
ically, they put restric-
tive assumptions on both
the space of models M
and the space of tasks F
when training Transform-
ers. Additionally, they
impose impractical assumptions on model weights needed
to prove their notion of equivalence between ICL and GD.
We discuss why these deviations from real practice are non-
trivial and offer little support for the equivalence between
ICL and GD in practical settings. Fig.1 encapsulates the
theme of our arguments discussed in detail next.

3.1. Real LLMs are not pretrained with ICL objective

The widely-known ability of ICL emerges in pre-trained
models (M) that are obtained by training on CLM objective
with natural language text as described in §2.1. Sequences
in the pretraining corpus of natural language have a com-
plicated relationship with the family of tasks F that they

can perform using ICL. Understanding this relationship is
an active area of research (cf. §6). However, we know that
the pretraining corpus does not exclusively and explicitly
contain sequences pertinent to F . We refer to this training
of Transformers with “natural” data (not necessarily natural
language), which does not explicitly train it to perform ICL,
as training with the CLM objective.

However, recent works use a different set of objectives. In
Akyürek et al. (2022); von Oswald et al. (2023); Garg et al.
(2022), the models are trained using the ICL objective:

argminΘ E
f∼F̂
xi

f∼X

[
L
(
f(xi),MΘ(x1◦f(x1)◦x2◦f(x2)...◦xi)

)]
.

(2)

This deviates from the real settings in at least two aspects:

Changing the space of tasks. This objective trains the
model on the same restricted task distribution that it is tested
on via ICL. We call this ÎCL, or the ability to perform
ICL by training on ICL objective (cf. Figure 1) and the
corresponding family of tasks F̂ . For example, if the target
task to learn is linear regression, the model is trained on
the sequence of linear regression instances. Therefore, this
setup does not necessarily capture the essence of how ICL
emerges in LLMs, which are not trained to perform ICL on
a family of tasks.

Changing the space of models. Moreover, optimizing for
this objective elicits a family of models M̂ that is embedded
with the inductive bias of expecting a constant structure in
the sequence: a series of (x, y) pairs followed with a query
input. Combined with the training on sequences specifically
related to a restricted family of tasks F̂ , this space of models
has different characteristics from the space of modelsM
defined in §2.1.

The relationship between these sets of models is neither
clear nor discussed in these recent works. Therefore, these
works essentially equate ÎCL with ĜD ( C in Figure 1).
Although restricted to a stricter family of tasks like Linear
Regression is reasonable for analysis, it is important to
discuss these distinctions between the setups. Using the
term Transformers to refer to both these spaces of models
and using the term ICL for ÎCL are both misleading.

3.2. Hand-constructed weights and their limits

In this section, we analyze the weight matrices constructed
by von Oswald et al. (2023) and Akyürek et al. (2022). As
no method is provided to arrive at these weights by training,
we place these hand-constructed weights under the umbrella
of ÎCL. Next, we show how they are hard to justify for
real-world language models (e.g., LLaMa-7B).

We first re-write the weight matrices of Transformers con-

3
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Akyürek et al. (2022); von Oswald et al. (2023); Garg et al.
(2022), the models are trained using the ICL objective:

argminΘ E
f∼F̂
xi

f∼X

[
L
(
f(xi),MΘ(x1◦f(x1)◦x2◦f(x2)...◦xi)

)]
.

(2)

This deviates from the real settings in at least two aspects:

Changing the space of tasks. This objective trains the
model on the same restricted task distribution that it is tested
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of ÎCL. Next, we show how they are hard to justify for
real-world language models (e.g., LLaMa-7B).

We first re-write the weight matrices of Transformers con-

3

Figure: ICL GD Equivelence

10

10Shen, Lingfeng. ”Do Pretrained Transformers Learn In-Context by Gradient Descent?” Proceedings of the 41st
International Conference on Machine Learning, 2024.

11 / 22



ICL as SGD?
Placeholder

• Lingfeng et al questioned the ICL ≈ SGD approach.

• They questioned both the Emergent equivalence
and the Constructive Equivalence

•

MΘ0
(σA ◦ xt)− MΘ0

(σB ◦ xt)︸ ︷︷ ︸
The order sensitivity of ICL

= MΘσA
(xt)− MΘσB

(xt)︸ ︷︷ ︸
The order sensitivity of algorithm A

• Across all metrics(Accuracy, Cosine similarity among
others), ICL and GD show inconsistent behavior.

Do pretrained Transformers Learn In-Context by Gradient Descent?

Gradient Descent (GD). Gradient Descent is an itera-
tive numerical optimization algorithm used to minimize a
given objective with respect to model parameters. Given a
model with initial parameters Θ0 and a differentiable loss
function J ∈ Y×Y → R, the algorithm updates the param-
eters toward the negative gradient ∇Θ0J . GD is a standard
optimizer used to train neural networks including LLMs.
Although there are variants, like SGD and Adam, that work
well in practice, we focus our study on vanilla GD, which
calculates the gradients and takes a step (learning rate η) of
fixed size. In the context of learning from a set of demon-
strations, pretrained models MΘ0

∼M are fine-tuned on a
particular task f using GD by updating model parameters.
Formally, parameter updates on the model MΘ0 are per-
formed for some epochs using the available demonstrations
Sf = {Sf

i = (xi, f(xi))}Ni=1 as follows:

Θ1 = Θ0 − η∇Θ

 1

N

∑
(xi,f(xi))

∈Sf

J (MΘ0(xi), f(xi))


(1)

After this process, the model is expected to perform this
task given a new test sample directly as input: MΘ1

(xt
i).

3. The limiting assumptions in the study of
ICL≈GD hypothesis

emergent

whole model 
updates

sub-model 
updates

not emergent

Ⓐ Ⓑ Ⓒ

Figure 1: C is discussed in
§3. A , B in §4, §5;

We highlight how recent
studies drift from these
conventional definitions
of ICL and GD (§2.2)
to support another form
of equivalence. Specif-
ically, they put restric-
tive assumptions on both
the space of models M
and the space of tasks F
when training Transform-
ers. Additionally, they
impose impractical assumptions on model weights needed
to prove their notion of equivalence between ICL and GD.
We discuss why these deviations from real practice are non-
trivial and offer little support for the equivalence between
ICL and GD in practical settings. Fig.1 encapsulates the
theme of our arguments discussed in detail next.

3.1. Real LLMs are not pretrained with ICL objective

The widely-known ability of ICL emerges in pre-trained
models (M) that are obtained by training on CLM objective
with natural language text as described in §2.1. Sequences
in the pretraining corpus of natural language have a com-
plicated relationship with the family of tasks F that they

can perform using ICL. Understanding this relationship is
an active area of research (cf. §6). However, we know that
the pretraining corpus does not exclusively and explicitly
contain sequences pertinent to F . We refer to this training
of Transformers with “natural” data (not necessarily natural
language), which does not explicitly train it to perform ICL,
as training with the CLM objective.

However, recent works use a different set of objectives. In
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on via ICL. We call this ÎCL, or the ability to perform
ICL by training on ICL objective (cf. Figure 1) and the
corresponding family of tasks F̂ . For example, if the target
task to learn is linear regression, the model is trained on
the sequence of linear regression instances. Therefore, this
setup does not necessarily capture the essence of how ICL
emerges in LLMs, which are not trained to perform ICL on
a family of tasks.

Changing the space of models. Moreover, optimizing for
this objective elicits a family of models M̂ that is embedded
with the inductive bias of expecting a constant structure in
the sequence: a series of (x, y) pairs followed with a query
input. Combined with the training on sequences specifically
related to a restricted family of tasks F̂ , this space of models
has different characteristics from the space of modelsM
defined in §2.1.

The relationship between these sets of models is neither
clear nor discussed in these recent works. Therefore, these
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Figure 2: When the signal about the prompt concept within each example (green) is greater than
the error from low-probability transitions between examples, in-context learning succeeds in our
latent concept setting (Theorem 1). Increasing the example length k increases the signal. The signal
for in-context learning comes from tokens in both the inputs and the input-output mapping.

3.3.2 Non-distinguishable case

The distinguishability condition (Condition 1) fails when there is some θ 6= θ∗ for which the KL
divergence between θ and θ∗ is less than the error terms. However, this also means that the output
distributions of θ and θ∗ are close in KL. We leverage this to prove that the expected 0-1 error
decreases with the example length k under two different settings where distinguishability does not
hold.

Continuity. Our first result relies on a continuity assumption between the concept parameter and
its corresponding output distribution. Our assumption is based on prior works (Kleijn and van der
Vaart, 2012), where the KL divergence is assumed to have a 2nd-order Taylor expansion.

Theorem 2. Let the set of θ which does not satisfy Equation 14 in Condition 1 to be B. Assume that KL
divergences have a 2nd-order Taylor expansion around θ∗:

∀j > 1, KLj(θ
∗‖θ) =

1

2
(θ − θ∗)>Ij,θ∗(θ − θ∗) +O(‖θ − θ∗‖3) (16)

where Ij,θ∗ is the Fisher information matrix of the j-th token distribution with respect to θ∗. Let γθ∗ =
maxj λmax(Ij,θ∗ )
min jλmin(Ij,θ∗ ) where λmax, λmin return the largest and smallest eigenvalues. Then for k ≥ 2 and as n → ∞,
the 0-1 risk of the in-context learning predictor fn is bounded as

lim
n→∞

L0-1(fn) ≤ inf
f
L0-1(f) + g−1

(
O

(
γθ∗ supθ∈B(εθstart + εθdelim)

k − 1

))
(17)

where g(δ) = 1
2((1 − δ) log(1 − δ) + (1 + δ) log(1 + δ)) is a calibration function (Steinwart, 2007, Ávila

Pires and Szepesvári, 2016) for the multiclass logistic loss for δ ∈ [0, 1), assuming that the minimizers of the
0-1 risk and multiclass logistic risk are the same.

Since the inverse calibration function g−1 is roughly linear in ε for ε ≤ 0.7, the excess risk roughly
decreases as O(1/k). When the “worst-case condition number” γθ∗ of the Fisher information ma-
trices is smaller (well-conditioned), the error decreases. Intuitively, this means that there is no
direction to vary θ∗ in which the output distribution will sharply change. As a consequence, the
concepts θ that are not distinguishable from the prompt concept θ∗ parameterize distributions that
produce similar outputs to the prompt concept and thus achieve a small error.
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where x1:i={x1,x2,...,xi}.
To evaluate stochastic processes, we define a

fixed set of possible outcomes Ω= {o1,o2,...,ok},
where each outcome o∈Ω is a sequence of tokens
corresponding to a specific string value (e.g.,
when modeling a coin flip, the outcomes “heads”
and “tails” might correspond to token sequences
[_heads] and [_tails], respectively). For each
outcome o, we compute the probability given a
prompt—analogous to updating our beliefs in a
Bayesian framework—as follows:

pM(o |prompt)=
|o|∏

i=1

pM(oi |o1:i−1,prompt)

(11)
where |o| denotes the number of tokens in o
and o1:i−1 represents the subsequence of tokens
preceding the ith token in o.

Because these outcomes are a subset of all
possible token sequences thatM could generate,
we renormalize the distribution over the support
Ω. We denote the renormalized model distribution
as p̂M(o) for o∈Ω (see subsection C.2 for further
details on the renormalization process).

In our experiments, we measure the total
variation distance (TVD) between the true posterior
distribution p∗(o) and the normalized model
distribution p̂M(o) over the support Ω:

δ(p∗,p̂M)=
1

2

∑

o∈Ω
|p∗(o)−p̂M(o)| (12)

This distance metric quantifies the discrepancy
between the two distributions—zero indicating
perfect alignment and higher values indicating
greater divergence.

We would like to clearly state that we are not
claiming that LLMs themselves are explicitly
Bayesian, rather, we ask the question: do model
predictive distributions have Bayesian behavior? In
this paper we treat models themselves as point-wise
estimators of distributional parameters (in our case,
we use them to estimate the parameters of a binomial
distribution), and ask if those point-wise estimates
align with reasonable Bayesian frameworks.

We evaluate several models, including Gemma-2
(Team et al., 2024), Phi-2/Phi-3.5 (mini) (Abdin
et al., 2024), Llama-3.1 (8B) (Dubey et al., 2024),
Mistral 7B (Jiang et al., 2023), and OLMoE
(7B) (Muennighoff et al., 2024), along with their
instruction-tuned variants. For scaling experiments,
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Figure 2: Model priors: All language models evaluated
present a bias towards heads.

we leverage the Pythia Scaling Suite (Biderman
et al., 2023) For more details regarding these
models, please refer to Appendix D.

4 Understanding the LLM Prior

Due to data-intensive pre-training, language models
inherently encode a prior over θ (the likelihood
of heads in the coin-flip). We are interested in
understanding these priors and understanding how
to update the priors via explicit prompting.

To extract a prior over heads and tails, we query
the models for a coin flip through 50 different
prompt variants (e.g. “I flipped a coin and
it landed on”), and compute the normalized
logit value ascribed to heads (discussed in detail in
Appendix C). As shown in Figure 2, all language
models evaluated begin with fundamental priors
for θ that are heads-biased, and in some cases,
significantly so. This observation is reflected in
the tokenization structure itself; in some cases,
models do not see sufficient data to assign a full
token to [_tails] and instead encode this in a
pair of tokens (which we handle when computing
probability, see Appendix C). Thus, models begin
divergent from an unbiased estimate of coin priors.

Effect of explicit biasing via prompting. Next,
we explore if we can encourage models to update
their priors by providing an explicit value for θ in
the prompt. We define a set of biasing statements,
i.e. describing unfair coins, of the form “When I
flip coins, they land on heads X% of the
time.”, and run a set of trials, evaluating the TVD
between models’ probabilities over outcomes and
the expected distribution for the biased θ.

Results from this experiment are presented in
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Enough Coin Flips Can Make LLMs Act Bayesian

Ritwik Gupta* Rodolfo Corona* Jiaxin Ge* Eric Wang
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Abstract

Large language models (LLMs) exhibit the
ability to generalize given few-shot examples
in their input prompt, an emergent capability
known as in-context learning (ICL). We
investigate whether LLMs use ICL to perform
structured reasoning in ways that are consistent
with a Bayesian framework or rely on pattern
matching. Using a controlled setting of biased
coin flips, we find that: (1) LLMs often possess
biased priors, causing initial divergence in
zero-shot settings, (2) in-context evidence
outweighs explicit bias instructions, (3) LLMs
broadly follow Bayesian posterior updates, with
deviations primarily due to miscalibrated priors
rather than flawed updates, and (4) attention
magnitude has negligible effect on Bayesian
inference. With sufficient demonstrations
of biased coin flips via ICL, LLMs update
their priors in a Bayesian manner. Code and
visualizations are available on the project page.

1 Introduction

Large language models (LLMs) designed for
next-token prediction have gained significant pop-
ularity, largely because of their ability to generalize
beyond language prediction, and perform a wide
range of novel tasks without requiring explicit
weight updates (Brown et al., 2020). Methods
to induce emergence in controlled ways include
techniques such as chain-of-thought prompting
(Wei et al., 2022), prompt chaining (Wu et al., 2022),
and in-context learning (ICL). ICL, particularly,
provides demonstrations of a specific task to the
model as part of its input prompt.

Despite significant empirical success, the under-
lying mechanisms of ICL remain poorly understood.
While it is clear that models can adapt their predic-
tions in response to few-shot examples, it is less
clear whether this adaptation aligns with statistical
principles such as Bayesian inference. Do these
models simply replicate memorized patterns from

*Denotes co-first authorship.
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Figure 1: When we ask large language models (LLMs)
to model sequences with in-context learning (ICL), how
do they adapt their posterior probabilities given the
provided examples? This figure explores how model
probabilities change as we add new ICL examples in a
biased coin-flipping experiment. The X-axis represents
steps in the trajectory, while the Y-axis shows the
predicted parameter of a Bernoulli distribution. Our
results reveal that, while LLMs often have poorly
calibrated priors, their updated parameter estimates
broadly align with Bayesian behavior.

their training data, or do they systematically update
their beliefs in a way that is consistent with Bayesian
reasoning when presented with new evidence in the
prompt? In this work, we investigate these questions
using a controlled setting of biased coin flips.

A prominent explanation for ICL’s behavior is
that it reflects some form of Bayesian learning.
Prior studies have suggested that, in certain
scenarios, large language models can approximate
Bayesian updating by maintaining an implicit prior
distribution over latent structures and refining that
prior using contextual information (Xie et al., 2021;
Hahn and Goyal, 2023; Akyürek et al., 2022; Zhang
et al., 2023; Panwar et al., 2023). However, many of
these works rely on tasks (e.g., question-answering
or language modeling) where the true posterior
distribution is unknown, making it difficult to
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Hahn and Goyal, 2023; Akyürek et al., 2022; Zhang
et al., 2023; Panwar et al., 2023). However, many of
these works rely on tasks (e.g., question-answering
or language modeling) where the true posterior
distribution is unknown, making it difficult to
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Figure 3: Biased coins: Plots of mean total variation distance (TVD, ↓) against bias (θ) for non-instruct (left) and
instruct (right) models when aggregated across prompts (N=50) for the biased coin flip experiment. Shaded areas
show one standard deviation. While non-instruct models both (1) ignore biasing instructions in the prompts and
(2) almost always generate a biased distribution (≈70% heads), instruct-based models pay better attention to biasing
information, and perform significantly better when modeling extreme bias (always generating heads/tails).
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Figure 4: Biased coins and parameter scaling: Mean
total variation distance (TVD, ↓) vs. model size for
different bias percentages. We use the models from the
Pythia Scaling Suite. As the size of the model increases,
the performance does not change for a certain bias. The
relative ordering among different biases does shift as the
model size increases

less, allowing the model to adapt. The posterior
mean remains:

E[p]=
α

α+β
(15)

This decay ensures older data contributes less,
allowing adaptation to shifts in θ. For γ=1.0, this
remains the classical Bayesian filtering update.

Returning to our environment, Figure 7 shows
a single example roll-out of both classical and the
gamma-modified Bayesian filter, along with the as-
sociated model probabilities. We can see that while
the general shape of the trajectory fits the model
behavior, pure Bayesian filtering (i.e. γ=1.0) alone
does not explain the behavior of the model. Instead,
using a γ < 1, implying a shortened time horizon,
fits the behavior almost perfectly in some cases,
empirically suggesting that models are performing

Table 1: Bayesian filtering best fit γ value.

Model Best-Fit γ

OLMoE-1B-7B-0924 0.3268
Gemma-2-2B 0.4910
Gemma-2-2B-Instruct 0.3087
Llama3.1-8B 0.8807
Llama3.1-8B-Instruct 0.4655
Phi-2 0.8781
Mistral-7B 0.6903
Mistral-7B-Instruct 0.9107

local Bayesian updates with a slight discount factor.

Extending this idea, we leverage L-BFGS-B Zhu
et al. (1997) to fit a γ value to each model, with the
results shown in Table 1. We can see in this table that
the value of γ is notably different for each model,
suggesting that models have architecture-specific
time-horizon behavior. Interestingly, instruction-
tuned models generally have much lower γ values
than their non-instruction-tuned counterparts. This
implies that these models may be more local when
performing ICL and are more willing to switch
behaviors when prompted with new ICL evidence.

5.3 Does attention impact updates?

Some prior work, such as Zhang et al. (2023),
suggests that attention helps to weight the Bayesian
update. In this section, we aim to leverage our sim-
plified setup to empirically understand the impact
that attention has on the convergence behavior of
the model. We use the same setup as Section 5.2
with a sequence L of length N = 100. There is
a “switchover” point K = 50 such that samples
L1−K ∼Binom(K,θ1) and LK−N ∼Binom(N−
K,θ2). We experiment varying K∈ [10,90].

7639

Figure: Biased Coin Instruct vs Non-Instruct

1. LLMs have biased priors.

2. Initial predictions diverge from
ground truth due to these.

3. Explicit biasing (using prompts)
improves only Instruct LLMs.

4. ICL helps remove the bias,
similar to Bayesian Updates.
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Hypothesis 3: ICL and
Induction Heads



Induction Heads
Placeholder

•
[A∗][B∗] . . . [A] → [B]

where A∗ ≈ A and B∗ ≈ B are similar in some space.

• They emerge during training alongside ICL
ability.

• Core mechanism behind ICL.

• Ablation shows they are causal for ICL in
small models.

• Found across various model sizes and
tasks.

Formally, we define an induction head as one which exhibits the following two properties on a

repeated random sequence of tokens:

Prefix matching: The head attends back to previous tokens that were followed by the

current and/or recent tokens. That is, it attends to the token which induction would suggest

comes next.

Copying: The head’s output increases the logit corresponding to the attended-to token.

5

6

7

In other words, induction heads are any heads that empirically increase the likelihood of [B]  given

[A][B]...[A]  when shown a repeated sequence of completely random tokens. An illustration of

induction heads’ behavior is shown here:

Note that, as a consequence, induction heads will tend to be good at repeating sequences

wholesale. For example, given “The cat sat on the mat. The cat …”, induction heads will promote the

continuation “sat on the mat”. This gives a first hint of how they might be connected to general in-

context learning and even few-shot learning: they learn to repeat arbitrary sequences, which is a

(simple) form of few-shot learning.

One of things we’ll be trying to establish is that when induction heads occur in sufficiently large

models and operate on sufficiently abstract representations, the very same heads that do this

sequence copying also take on a more expanded role of analogical sequence copying or in-context

nearest neighbors. By this we mean that they promote sequence completions like

[A*][B*] … [A] → [B]  where A*  is not exactly the same token as A  but similar in some

embedding space, and also B  is not exactly the same token as B* . For example, A  and A*  (as

well as B and B* ) might be the same word in different languages, and the induction head can then

translate a sentence word by word by looking for “something like A ”, finding A*  followed by B* ,

and then completing with “something like B* ” (which is B ). We are not yet able to prove

mechanistically that induction heads do this in general, but in Argument 4 we show empirical

examples of induction heads behaving in this way (including on translation), and in Argument 5 we

point out that the known copying mechanism of induction heads in small models can be naturally

adapted to function in this way.

Per-Token Loss Analysis

To better understand how models evolve during training, we analyze what we call the "per-token

loss vectors." The core idea traces back to a method used by Erhan et al. , and more generally to

the idea of "function spaces" in mathematics.

[15]

8

Figure: Induction Heads

The table below summarizes the quality of this evidence for the models we have studied: it applies

to both large and small models, and is the expected outcome if induction heads were responsible

for the majority of in-context learning, but it is only correlational and so could be confounded

(discussed more below).

STRENGTH OF ARGUMENT FOR SUB-CLAIMS

Small Attention-Only Small with MLPs Large Models

Contributes Some Medium, Correlational Medium, Correlational Medium, Correlational

Contributes Majority Medium, Correlational Medium, Correlational Medium, Correlational

Our first observation is that if we measure in-context learning for transformer models over the

course of training (defined as the 50th token loss minus the 500th token loss as described in Key

Concepts), it develops abruptly in a narrow window early in training (roughly 2.5 to 5 billion tokens)

and then is constant for the rest of training (see figure below).  Before this window there is less than

0.15 nats of in-context learning, after it there is roughly 0.4 nats, an amount that remains constant

for the rest of training and is also constant across many different model sizes (except for the one

layer model where not much in-context learning ever forms).  This seems surprising – naively, one

might expect in-context learning to improve gradually over training, and improve with larger model

sizes, as most things in machine learning do.9

Although we only show three models above, the pattern holds true very generally: many examples

are shown in the Model Analysis Table later in the paper, including models of varying model

architecture and size.Figure: Abrupt Loss Transition
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point out that the known copying mechanism of induction heads in small models can be naturally

adapted to function in this way.

Per-Token Loss Analysis

To better understand how models evolve during training, we analyze what we call the "per-token

loss vectors." The core idea traces back to a method used by Erhan et al. , and more generally to

the idea of "function spaces" in mathematics.
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The table below summarizes the quality of this evidence for the models we have studied: it applies

to both large and small models, and is the expected outcome if induction heads were responsible

for the majority of in-context learning, but it is only correlational and so could be confounded

(discussed more below).

STRENGTH OF ARGUMENT FOR SUB-CLAIMS

Small Attention-Only Small with MLPs Large Models

Contributes Some Medium, Correlational Medium, Correlational Medium, Correlational

Contributes Majority Medium, Correlational Medium, Correlational Medium, Correlational

Our first observation is that if we measure in-context learning for transformer models over the

course of training (defined as the 50th token loss minus the 500th token loss as described in Key

Concepts), it develops abruptly in a narrow window early in training (roughly 2.5 to 5 billion tokens)

and then is constant for the rest of training (see figure below).  Before this window there is less than

0.15 nats of in-context learning, after it there is roughly 0.4 nats, an amount that remains constant

for the rest of training and is also constant across many different model sizes (except for the one

layer model where not much in-context learning ever forms).  This seems surprising – naively, one

might expect in-context learning to improve gradually over training, and improve with larger model

sizes, as most things in machine learning do.9

Although we only show three models above, the pattern holds true very generally: many examples

are shown in the Model Analysis Table later in the paper, including models of varying model

architecture and size.Figure: Abrupt Loss Transition
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•
[A∗][B∗] . . . [A] → [B]

where A∗ ≈ A and B∗ ≈ B are similar in some space.

• They emerge during training alongside ICL
ability.

• Core mechanism behind ICL.

• Ablation shows they are causal for ICL in
small models.

• Found across various model sizes and
tasks.

Formally, we define an induction head as one which exhibits the following two properties on a

repeated random sequence of tokens:

Prefix matching: The head attends back to previous tokens that were followed by the

current and/or recent tokens. That is, it attends to the token which induction would suggest
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5

6

7
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Learning Plateau’s and Abrupt Switching of ICL
PlaceholderThe mechanistic basis of data dependence and abrupt learning in an in-context classification taskA PREPRINT
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?

In-weights (IW) accuracy (target not in context)

?

In-context (IC) accuracy (novel classes)

... ...
K classes L labels

?

In-context (IC2) accuracy 2 (swapped label)
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+
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attention
head 1

attention
head 2

logits (L labels)
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(a)
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(c) (d)

Figure 1: (a) Input sequences consist of N item-label pairs followed by a target. Items are drawn from K classes
assigned to L ≤ K labels. At least one item belongs to the same class as the target. The network is tasked to predict the
label of the target. The number of classes (K), their rank-frequency distribution (α), within-class variability (ε) and the
number of items from a single class in an input sequence (B) parameterize the data distribution. (b) IWL is measured
using input sequences where the items’ and target’s classes are randomly sampled. ICL is measured using items and
targets from novel classes and by swapping the label of an existing class in the context. (c) Network architecture. (d)
Loss and accuracy curves for six seeds (dark lines show averages over the seeds). Here, B = 2,K = 512.

transition remains unclear. Notably, this abrupt transition is often preceded by the formation of induction heads in
intermediate layers of the network, suggesting that induction head formation may provide a scaffold for the development
of more complex in-context computations. Other work provides empirical evidence that ICL is the key driver behind
the emergent abilities of large language models (Lu et al., 2023). Thus, elucidating the mechanisms that underpin ICL,
and induction heads in particular, may provide crucial insights into the data distributional and architectural factors that
lead to emergent zero-shot learning.

A recent empirical study has highlighted key data distributional properties pertinent to language that promote ICL in a
hybrid in-context/in-weights classification task (Chan et al., 2022). In this setup, a 12-layer transformer network is
trained to predict the class label of a target item given a sequence of N item-label pairs in the context. The item classes
are drawn from Omniglot (Lake et al., 2019), a standard image-label dataset. By manipulating the distribution of classes
shown during training, various data distributional properties that influence the ICL vs IWL trade-off were identified.
This setup offers a well-controlled paradigm for identifying the factors that enable attention-based models to learn
in-context learning solutions without explicitly trained to do so.

Our main contributions are as follows. We first show that the data dependencies highlighted in Chan et al. (2022)
are recapitulated in a task with simplified input statistics and a two-layer attention-only network architecture. By
identifying progress measures and designing careful experiments, we show that ICL is driven by the abrupt formation
of an induction head. We construct a minimal two-parameter model of an induction head stacked with a deep classifier,
which reproduces all data distributional dependencies and captures the dynamics of learning. Finally, we develop a
phenomenological model of an induction head’s loss landscape. This analysis enables us to trace the abrupt learning
phenomenon to cliffs in the landscape created by nested nonlinearities in a multi-layer attention-based network.

2 Task and network architecture

Task structure. The task structure is based on a common ICL formulation. The network is trained to predict the label
of a target xq given an alternating sequence of N items and N labels: x1, ℓ1, x2, ℓ2, . . . , xN , ℓN , xq, ? (Figure 1a). We
embed the items and labels in P +D dimensions. The first P dimensions encode positional information and the latter
D dimensions encode content. Position is encoded by a one-hot P -dimensional vector (we use P = 65 throughout).
The input sequence occupies a random window of length 2N + 1 between 0 and P − 1. This choice of positional
encoding biases the network to learn a translation-invariant computation.

The items are sampled from a gaussian mixture model with K classes. Each class k is defined by a D-dimensional
vector µk whose components are sampled i.i.d from a normal distribution with mean zero and variance 1/D. The

2

Figure: Interpreting In-Context Classification Task

15
15Reddy, Gautam. “The Mechanistic Basis of Data Dependence and Abrupt Learning in an In-Context Classification

Task.” International Conference on Learning Representations, 2024.

18 / 22



Learning Plateau’s and Abrupt Switching of ICL
Placeholder

Breaking through the Learning Plateaus of In-context Learning in Transformer

Figure 3. Learning plateus. A. We reproduce the learning
plateaus and transition pattern in our synthetic task, similar to
Fig 1B. B. The length of learning plateaus increase with the com-
plexity of the task measured by entropy of P(m).

dent that the synthetic task is successful in replicating the
plateaus and transition pattern observed in the actual task.

The length of learning plateaus increases when increases
the complexity of task We delved into the relationship be-
tween task complexity and the duration of learning plateaus.
We employed the entropy of the mapping function m’s dis-
tribution as an indicator of task complexity. To pinpoint
the transition process, we identified the first epoch at which
the model achieved a test accuracy greater than 0.17. This
threshold was selected because the model’s accuracy re-
mains below 0.17 before reaching the transition process and
rises above this thereafter. As anticipated, more complex
tasks necessitate longer learning plateaus (Fig. 3B). How-
ever, the relationship between the length of the plateaus and
the entropy is not linear. With every unit increase in en-
tropy, the extension of the learning plateau is marginal when
the entropy is either low or relatively high; conversely, the
growth in plateau length is more pronounced at intermediate
levels of entropy.

4.3. Dysfunction of weights component

In the preceding section, we analyzed the plateaus-and-
transition pattern in in-context learning concerning task
complexity. In this section, our objective is to delve deeper
into the role that internal mechanisms—specifically, the
quality of the weights and context components—have in
influencing the plateaus-and-transition pattern.

Confusing pattern of weights component We exe-
cuted the task under two conditions: Dfix ⇒ Dfix and
Drnd ⇒ Drnd, with the outcomes presented in Fig. 4A. As
expected, in the simpler scenario of Dfix ⇒ Dfix, both
the context and weights components exhibit improvement
throughout the learning process, leading to enhanced in-
context learning performance. However, in the more chal-
lenging setting of Drnd ⇒ Drnd, the weights component
deteriorates over time, with its score remaining below the
initial value for the entire duration of the learning process.

This differs from the context component, which improves
with the rise in in-context learning performance. We refer
to the situation where the weights component score falls
below the starting value as a dysfunction of the weights
component. This outcome is intriguing because training has
no effect in improving the weights component. To gain bet-
ter insight into this phenomenon, we carried out additional
experiments across varying levels of task complexity. The
model was trained for 50 epochs on these tasks, and we
monitored the weights component score post-training. We
found that the weights component score gradually declines
as the entropy increases, eventually stabilizing at around
0.8, as shown in Fig. 4B.

Weight component degradation is linked to duration
learning plateaus. Our primary concern is the duration
of learning plateaus, and we seek to comprehend its connec-
tion to the in-weights component. To investigate this, we
graphed the relationship between learning plateau length
and weights component score after 50 epochs, as shown
in Fig. 4C. Our analysis reveals an approximately linear
correlation between the weights component score and the
learning plateau duration. Short learning plateaus occur
when there is a significant improvement in the in-weights
component score. Conversely, long learning plateaus arise
when the weights component is dysfunctioning or on the
edge of dysfunction, that is when the weights component
score is at or below the initial value.

Why the weights component is related to learning
plateaus. We are attempting to comprehend this phe-
nomenon, yet theoretically analyzing the learning process
of a multilayer transformer on intricate data proves to be
a formidable challenge. Recent theoretical studies (Tian
et al., 2023; Deora et al., 2023; Huang et al., 2023) fo-
cus on the learning dynamics of Transformers with one or
two layers using simple datasets. Given these limitations,
we propose a more attainable, albeit weaker, construction
analysis in Appendix E. Our approach is grounded in the
notion that if a model with a good weights component can
enhance its in-context learning capabilities with just a few
additional parameters, then the weights component must be
pivotal for achieving in-context learning prowess. To test
this idea, we hypothesize that the in-weights component has
been perfectly learned within a specific layer of the Trans-
former. Our findings reveal that by adding at most three
extra Transformer layers specifically tailored for processing
contextual information, the model demonstrates significant
in-context learning performance. These outcomes suggest
that in-context learning abilities are more readily achieved
when the weights component is well-optimized.

5

Figure: Plateau in ICL

⇒ Burstiness, Large Vocabulary Size,
Skewed Classes and High Diversity within
Class promote ICL. a

⇒ Decompose Representation from
parameters (W) and parameters + context (C).

⇒ Transferring Embeddings and Initial layers
eliminates plateaus. b

aReddy, Gautam. “The Mechanistic Basis of Data
Dependence and Abrupt Learning in an In-Context
Classification Task.” International Conference on Learning
Representations, 2024.

bFu, Jingwen, et al. ”Breaking through the Learning
Plateaus of In-context Learning in Transformer.”
Proceedings of the 41st International Conference on Machine
Learning, 2024.
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Table 1: Examples of our synthetic in-context learning tasks.

Task Prompt Target

Associative Recall a, 1, b, 3, c, 2, b 3

Linear Regression x1, y1,x2, y2,x3, y3,x4 y4 ∃w such that ∀i, yi = xi ·w
Multiclass Classification x1, b, x2, a, x3, a, x4 b x1, x4 ∼ N (yb, Id)

x2, x3 ∼ N (ya, Id)

Image Classification l4E9E9l4l4E9l 4 bursty training prompt

L5G8E9B6O3l4e 2 non-bursty training prompt

f1c0c0f1f1c0c 0 evaluation prompt

Language Modeling Colorless green ideas sleep furiously

However, whether both findings are specific to their task or indicative of more general behavior
remains uncertain.

The community’s focus on attention is understandable given the success of transformers. However,
the architecture comes with a number of limitations, such as quadratic time and memory complex-
ity. These limitations spurred research into alternative architectures such as efficient self-attention
models (Tay et al., 2022a) and state space models (Gu et al., 2021). If these alternatives are to re-
place transformers as the dominant model architecture, it is natural to wonder if they are capable
of ICL. Moreover, some are designed to handle prompts of arbitrary length, potentially introducing
a novel ICL form, constrained only by dataset size rather than inherent architectural limitations.
Furthermore, classic architectures such as recurrent neural networks and convolutional neural net-
works were once the backbone of machine learning research before the introduction of transformers
and ICL as a concept. Do these classic architectures inherently lack ICL capabilities, or were they
simply constrained by the compute and data available during their heyday.

In this study, we set out to address the aforementioned questions. Specifically, we aim to answer
the following research questions: Which architectures are capable of ICL, and which exhibit supe-
rior ICL performance? Our primary focus lies on the former question. While the latter is more
challenging to assess, our experiments provide insights into which families of architectures tend to
perform well, even if they do not offer definitive answers. To advance our objectives, we evaluate
a diverse range of model architectures that span several design paradigms. This includes both the
classical methods previously mentioned and modern approaches such as the transformer and those
inspired by state space models. Our assessment covers the ICL capabilities of each architecture over
a wide array of synthetic tasks, spanning different modalities and including both classification and
regression, as depicted in Table 1.

Our specific contributions are as follows:

• LARGE-SCALE EMPIRICAL STUDY: We conduct the first large-scale empirical study com-
paring ICL performance across diverse model architectures, shedding light on their rela-
tive strengths and weaknesses. Code is available at https://github.com/ivnle/
synth-icl.

• UNIVERSALITY OF ICL: We discover that all the considered architectures can perform
in-context learning under a wider range of conditions than previously documented, lending
support to the position that ICL is not exclusive to attention-based models.

• EMPIRICAL SUCCESS OF ATTENTION ALTERNATIVES: Our findings demonstrate that
some attention alternatives not only compete with but, in certain cases, surpass transform-
ers at in-context learning. This suggests that efficiency gains in these architectures do not
necessarily come at the expense of performance.

2

16 17

16Lee, Ivan, et al. ”Is Attention Required for ICL? Exploring the Relationship Between Model Architecture and
In-Context Learning Ability.” The Twelfth International Conference on Learning Representations, 2024.

17Park, Jongho, et al. ”Can Mamba Learn How to Learn? A Comparative Study on In-Context Learning Tasks.” arXiv
preprint arXiv:2402.04248, 2024.
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Figure 1: ICL regression and classification results. (a) ICL presents context exemplars from a
novel task (red), followed by a query input (blue). The model must infer the solution (green) based
on the context. (b) ICL regression example. The model receives linearly-related input points, and
must regress the query point. (c) Compute vs. MSE on the unrestricted task distribution. Each point
represents a single model, with particular parameters and training iterations. At large compute, MSE
is approximately equal across all architectures. The red line corresponds to the Bayes optimal Ridge
MSE. (d) Excess MSE (MSE above Bayes optimal) for varying context length L on the unrestricted
task distribution. Excess MSE remains flat for Mixers, but rises somewhat for Transformers. MLPs
fail to learn in-context at all beyond 26 context exemplars. The grey line corresponds to the excess
MSE incurred by always guessing zero. (e, f) IWL to ICL transition with increasing data diversity.
We train on a finite distribution with k weights, then test on both the finite training distribution and
the unrestricted distribution. All models exhibit a transition from IWL (represented by dMMSE) to
ICL (represented by Ridge) as k increases. Note: it is possible to “outperform" Bayes optimal Ridge
on the finite training distribution by learning in-weight the underlying β’s. (g) ICL classification
example, with burstiness B = 3. Multiple clusters may share the same label. (h) Compute vs. cross
entropy loss on ICL classification, with k = 2048 clusters, B = 4, and L = 8, which pushes all
models to learn in-context. At large compute, all architectures attain near-zero cross entropy loss.
The gray line corresponds to loss obtained from placing equal probability on the 2 (of C = 32) labels
present in context. (i) Cross entropy loss for varying context length L on the task configuration in
(h). Loss is relatively flat for all architectures, though it increases a little for Mixers. (j) IWL to ICL
transition with increasing data diversity, where L = 8 and B = 4. All models exhibit a transition
from IWL to ICL as the number of clusters k increases. (all) We use n = 8 dimension inputs. All
line plots feature 95 percent confidence intervals about the mean, estimated from 5 replications.
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18

18Tong, William L., and Cengiz Pehlevan. ”MLPs Learn In-Context on Regression and Classification Tasks.” The
Thirteenth International Conference on Learning Representations, 2025.
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Figure 1: ICL regression and classification results. (a) ICL presents context exemplars from a
novel task (red), followed by a query input (blue). The model must infer the solution (green) based
on the context. (b) ICL regression example. The model receives linearly-related input points, and
must regress the query point. (c) Compute vs. MSE on the unrestricted task distribution. Each point
represents a single model, with particular parameters and training iterations. At large compute, MSE
is approximately equal across all architectures. The red line corresponds to the Bayes optimal Ridge
MSE. (d) Excess MSE (MSE above Bayes optimal) for varying context length L on the unrestricted
task distribution. Excess MSE remains flat for Mixers, but rises somewhat for Transformers. MLPs
fail to learn in-context at all beyond 26 context exemplars. The grey line corresponds to the excess
MSE incurred by always guessing zero. (e, f) IWL to ICL transition with increasing data diversity.
We train on a finite distribution with k weights, then test on both the finite training distribution and
the unrestricted distribution. All models exhibit a transition from IWL (represented by dMMSE) to
ICL (represented by Ridge) as k increases. Note: it is possible to “outperform" Bayes optimal Ridge
on the finite training distribution by learning in-weight the underlying β’s. (g) ICL classification
example, with burstiness B = 3. Multiple clusters may share the same label. (h) Compute vs. cross
entropy loss on ICL classification, with k = 2048 clusters, B = 4, and L = 8, which pushes all
models to learn in-context. At large compute, all architectures attain near-zero cross entropy loss.
The gray line corresponds to loss obtained from placing equal probability on the 2 (of C = 32) labels
present in context. (i) Cross entropy loss for varying context length L on the task configuration in
(h). Loss is relatively flat for all architectures, though it increases a little for Mixers. (j) IWL to ICL
transition with increasing data diversity, where L = 8 and B = 4. All models exhibit a transition
from IWL to ICL as the number of clusters k increases. (all) We use n = 8 dimension inputs. All
line plots feature 95 percent confidence intervals about the mean, estimated from 5 replications.
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must regress the query point. (c) Compute vs. MSE on the unrestricted task distribution. Each point
represents a single model, with particular parameters and training iterations. At large compute, MSE
is approximately equal across all architectures. The red line corresponds to the Bayes optimal Ridge
MSE. (d) Excess MSE (MSE above Bayes optimal) for varying context length L on the unrestricted
task distribution. Excess MSE remains flat for Mixers, but rises somewhat for Transformers. MLPs
fail to learn in-context at all beyond 26 context exemplars. The grey line corresponds to the excess
MSE incurred by always guessing zero. (e, f) IWL to ICL transition with increasing data diversity.
We train on a finite distribution with k weights, then test on both the finite training distribution and
the unrestricted distribution. All models exhibit a transition from IWL (represented by dMMSE) to
ICL (represented by Ridge) as k increases. Note: it is possible to “outperform" Bayes optimal Ridge
on the finite training distribution by learning in-weight the underlying β’s. (g) ICL classification
example, with burstiness B = 3. Multiple clusters may share the same label. (h) Compute vs. cross
entropy loss on ICL classification, with k = 2048 clusters, B = 4, and L = 8, which pushes all
models to learn in-context. At large compute, all architectures attain near-zero cross entropy loss.
The gray line corresponds to loss obtained from placing equal probability on the 2 (of C = 32) labels
present in context. (i) Cross entropy loss for varying context length L on the task configuration in
(h). Loss is relatively flat for all architectures, though it increases a little for Mixers. (j) IWL to ICL
transition with increasing data diversity, where L = 8 and B = 4. All models exhibit a transition
from IWL to ICL as the number of clusters k increases. (all) We use n = 8 dimension inputs. All
line plots feature 95 percent confidence intervals about the mean, estimated from 5 replications.
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novel task (red), followed by a query input (blue). The model must infer the solution (green) based
on the context. (b) ICL regression example. The model receives linearly-related input points, and
must regress the query point. (c) Compute vs. MSE on the unrestricted task distribution. Each point
represents a single model, with particular parameters and training iterations. At large compute, MSE
is approximately equal across all architectures. The red line corresponds to the Bayes optimal Ridge
MSE. (d) Excess MSE (MSE above Bayes optimal) for varying context length L on the unrestricted
task distribution. Excess MSE remains flat for Mixers, but rises somewhat for Transformers. MLPs
fail to learn in-context at all beyond 26 context exemplars. The grey line corresponds to the excess
MSE incurred by always guessing zero. (e, f) IWL to ICL transition with increasing data diversity.
We train on a finite distribution with k weights, then test on both the finite training distribution and
the unrestricted distribution. All models exhibit a transition from IWL (represented by dMMSE) to
ICL (represented by Ridge) as k increases. Note: it is possible to “outperform" Bayes optimal Ridge
on the finite training distribution by learning in-weight the underlying β’s. (g) ICL classification
example, with burstiness B = 3. Multiple clusters may share the same label. (h) Compute vs. cross
entropy loss on ICL classification, with k = 2048 clusters, B = 4, and L = 8, which pushes all
models to learn in-context. At large compute, all architectures attain near-zero cross entropy loss.
The gray line corresponds to loss obtained from placing equal probability on the 2 (of C = 32) labels
present in context. (i) Cross entropy loss for varying context length L on the task configuration in
(h). Loss is relatively flat for all architectures, though it increases a little for Mixers. (j) IWL to ICL
transition with increasing data diversity, where L = 8 and B = 4. All models exhibit a transition
from IWL to ICL as the number of clusters k increases. (all) We use n = 8 dimension inputs. All
line plots feature 95 percent confidence intervals about the mean, estimated from 5 replications.
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